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An Incompressible Rayleigh-Taylor Problem in KULL
Mark Ulitsky AX-Division L-023

The god of the EZturb mix model in KULL isto predict the turbulent mixing
process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz
instabilities. In this report we focus on a simple example of the Rayleigh-Taylor
instability (which occurs when a heavy fluid lies above a light fluid, and we perturb the
interface separating them). It iswell known that the late time asymptotic, fully self-
similar form for the growth of the mixing zone scales quadratically with time.

In Kull, the EZturb k- € model [1-2] istightly coupled to the Lagrange hydro, and
so the actual mix model equations we solve when the model is active are:
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Here, ¢,, p,, and |, are the volume fraction, thermodynamic density, and specific

internal energy (by mass) for material r. S; is the strain rate tensor, and T; is the turbulent
shear stress tensor, for which we use the following Boussinesq approximation:
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The turbulent viscosity includes the effects of both shear and buoyancy and takes the
form:
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The unlimited form of the buoyant production term is given by:
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and the way this term manifestsitself in the internal energy equation is:
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The model constants are Cye, Cy, Cae, Om, Ou, Ok, Oz, Gp, Cy, and C,,. AlSO, 815, Oaniso,
and 9, giss are on/off switches that can be set to 1 or 0. To simplify the form of the
turbulent viscosity and the Reynolds stress, we will set C,= 0 and daniso = O for this
problem.

Given the complexity of the mix model and the number of coupled PDEs we need
to solve to compute the growth of the turbulent mixing zone, it is worthwhile to verify a
priori whether the EZturb model is consistent with t* growth. Let’s start by defining three
length scales, where the first will be formed using the turbulent diffusivity (v) and the
acceleration (g), the second will be formed using the turbulent kinetic energy (k) and the
turbulent dissipation (€), and the third will be formed using g and t. Dimensional analysis
gives:
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Now assume that k~t?, e~t°, v~k?/e, and that there is constant acceleration. Since fully
self-similar behavior demands that all length scales grow at the same rate, we can solve
two linear equationsto find that a=2 and b=1. Using the fact that p is bounded, the
pressure gradient is bounded by pg, and that the gradient operator scales like inverse
length (or t2), we can show that all the termsin the EZturb k-eqn grow linearly in time,
and that all the termsin the e-egn have a constant behavior in time (provided k and € have
the simple time scalings mentioned above). Therefore, when these equations are
integrated in time, we recover the result that the kinetic energy grows quadratically in
time, while the dissipation grows linearly in time. Thus, the EZturb model admits t*
growth as a possible solution.

Consider asimple 1 dimensional RT problem in abox of length L, with the
interface separating the heavy fluid from the light fluid located at x = L/2. Hydrostatic
pressure balances give P =Py —pL g X for—L/2<x’ <0andP=P—pugx for0O<x’
< L/2 (here, the subscript ‘L’ denotes light while ‘H’ denotes heavy). Note that we have
also made alinear transformation from x tox’, where0<x <L and-L/2 < x’ <L/2, s0
that the location of the interfaceisnow at x' = 0. We will take L =2 cm, py = 2 glem®, p.
=1 g/cm®, g =2 cm/sh?, and Py = 100 jerks/cm®. The heavy and light fluids will be
treated as gamma law gases with y4 = 5/3 and y. = 1.4. Since we will be running the RT
problem in a Lagrangian frame, we will use constant pressure boundary conditions to
provide the necessary acceleration. If we were running Eulerian (Lagrangian step plus
remap), then we would impose zero velocity at the walls.

We also want to run this problem in the nearly incompressible regime. To see
what constraints this places on the initial conditions, consider the definition of the
compressibility, T, which is (1/p) dp/dp. Thisimplies dp = pt dp, and ‘incompressible
means that a change in p (when multiplied by the density and compressibility) will only
cause asmall changein p. If we divide both sides by dx and assume an ideal gasfor
relating density to pressure, then we arrive at the simple result that (1/p) dp/dx = (1/p)
dp/dx. Since the pressure gradient for our RT problem scales like pg, we see that we want
to keep pg/P small. This explains why we are using such alarge value for the interface
pressure.

In addition to setting thermodynamic quantities like density and pressure, we also
need to initialize values for the turbulent kinetic energy and dissipation. To this end, we
have specified an initial turbulent kinetic energy of 1.0e-6 cm?sh® and an initial length
scale of 4.0e-6 cm. We then use g0 = (Ko)*%/Lo to set the value for the dissipation. Note
that there is nothing preventing us from specifying energy or length scale as a function of
position. We are ssimply choosing to set very small constant values for the turbulent
guantities and allowing them to build up over time through the buoyant production terms.
For the model constants and switches, we are using the following values:

OmM =0p=0y=0k =.7,0e=13,¢,=.09,C1=1.44,Cc2=192,c3=1.0, Oiso = 1, Oaniso =
0, Oy giss = 1.



Also, we assume the fluids are initially at rest and we set the artificial viscosity to zero.

Figure 1 shows the results of a convergence study, where we have used uniform
zoning on meshes with 50, 100, 200, and 400 zones. For computing the mixing zone
widths, we have interpolated to find the x-locations for the 5% and 95% valuesin volume
fraction. First, we can notice that mixing does not start at t=0, but rather it takes time for
the turbulent quantities (in particular, the turbulent diffusivity and length scale) to grow
in the zones adjacent to the fluid interface. Also, it may seem strange that we are
stopping the runs when the width is only approaching 1 cm or half of the box length. In
reality, the tails on the volume fraction distribution are so large that the bubbles and
spikes are hitting the walls at ~ 5.5 sh. The time step is also extremely small for these
calculations due to running in the nearly incompressible limit. For example, the time step
for the 100 zone run is ~ 3.0e-4 sh at early time and decreases as more mixing takes
place.

To determine whether we are achieving t> growth for the mixing zone, it is easier
to look at the growth rate, since quadratic growth implies alinear rate of growth.
Numerical differentiation of an interpolated quantity can be noisy, and so to give the
mixing more time to evolve and reach a self-smilar state, the box size was doubled for
the 50 and 100 zone runs. These results for the time evolution of the growth rate are
shown in Figure 2. While the 50 zone run takes a long time to settle into alinear growth
rate (approximately 5 sh), the 100 zone run appears to reach linear behavior at about 3 sh.

One can legitimately ask if thereis away to accelerate the onset of growth when
we initialize the turbulent length scale to be several orders of magnitude below the grid
gpacing. Fortunately, the answer is yes, although we will need to dlightly modify the form
of the buoyant production term. Basically, if we express the buoyant production term in
term of k and L variables, then there is afactor of k2L that comes from the kinematic
viscosity. Clearly, if L isvery small, then the production term will also be small, and will
remain so until k and € grow to the point such that the resulting L = k¥?/ € is of O(AXx).
To get contributions at early time, we can multiply the production term by the factor
(1+AXx/L) [3]. Thus, when L is small compared to Ax, the buoyant production term has a
significant effect.

Figure 3 shows the results of a convergence study with this extra factor included
in the production term. Now, we do not see the long delay before the onset of growth.
Also, as we increase the zoning, the widths get smaller, which is more consistent with the
fact that the volume fraction profiles are getting steeper under mesh refinement. Figure 4
shows the results of doubling the box length for the 50 and 100 zone cal culations, so that
they can run longer in time. From this plot, it appears as though we obtain quadratic
growth around t=5 sh. Since many people often ask what the value of o isin the
asymptotic growth of the mixing zone, we can compute the slope from this figure at late
time and divide it by 2 At g. Theresult isavaue of aof .053, which means the opyppie IS
~.0265. What isimportant is not the actual value of a, since a self-similar solution would
uniquely define the value in terms of model constants (the subject of future work), but
rather that we get the correct temporal scaling.
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